Categorical logic

Categorical logic is a branch of category theory within mathematics, adjacent to mathematical logic but more notable for its connections to theoretical computer science. In broad terms, categorical logic represents both syntax and semantics by a category, and an interpretation by a functor. The categorical framework provides a rich conceptual background for logical and type-theoretic constructions. The subject has been recognisable in these terms since around 1970.

Overview

There are three important themes in the categorical approach to logic:

Historical perspective

Categorical logic originated with Bill Lawvere's Functorial Semantics of Algebraic Theories (1963), and Elementary Theory of the Category of Sets (1964). Lawvere recognised the Grothendieck topos, introduced in algebraic topology as a generalised space, as a generalisation of the category of sets (Quantifiers and Sheaves (1970)). With Myles Tierney, Lawvere then developed the notion of elementary topos, thus establishing the fruitful field of topos theory, which provides a unified categorical treatment of the syntax and semantics of higher-order predicate logic. The resulting logic is formally intuitionistic. Andre Joyal is credited, in the term Kripke–Joyal semantics, with the observation that the sheaf models for predicate logic, provided by topos theory, generalise Kripke semantics. Joyal and others applied these models to study higher-order concepts such as the real numbers in the intuitionistic setting.

An analogous development was the link between the simply typed lambda calculus and cartesian-closed categories (Lawvere, Lambek, Scott), which provided a setting for the development of domain theory. Less expressive theories, from the mathematical logic viewpoint, have their own category theory counterparts. For example the concept of an algebraic theory leads to Gabriel–Ulmer duality. The view of categories as a generalisation unifying syntax and semantics has been productive in the study of logics and type theories for applications in computer science.

The founders of elementary topos theory were Lawvere and Tierney. Lawvere's writings, sometimes couched in a philosophical jargon, isolated some of the basic concepts as adjoint functors (which he explained as 'objective' in a Hegelian sense, not without some justification). A subobject classifier is a strong property to ask of a category, since with cartesian closure and finite limits it gives a topos (axiom bashing shows how strong the assumption is). Lawvere's further work in the 1960s gave a theory of attributes, which in a sense is a subobject theory more in sympathy with type theory. Major influences subsequently have been Martin-Löf type theory from the direction of logic, type polymorphism and the calculus of constructions from functional programming, linear logic from proof theory, game semantics and the projected synthetic domain theory. The abstract categorical idea of fibration has been much applied.

To go back historically, the major irony here is that in large-scale terms, intuitionistic logic had reappeared in mathematics, in a central place in the BourbakiGrothendieck program, a generation after the messy HilbertBrouwer controversy had ended, with Hilbert the apparent winner. Bourbaki, or more accurately Jean Dieudonné, having laid claim to the legacy of Hilbert and the Göttingen school including Emmy Noether, had revived intuitionistic logic's credibility (although Dieudonné himself found Intuitionistic Logic ludicrous), as the logic of an arbitrary topos, where classical logic was that of 'the' topos of sets. This was one consequence, certainly unanticipated, of Grothendieck's relative point of view; and not lost on Pierre Cartier, one of the broadest of the core group of French mathematicians around Bourbaki and IHES. Cartier was to give a Séminaire Bourbaki exposition of intuitionistic logic.

In an even broader perspective, one might take category theory to be to the mathematics of the second half of the twentieth century, what measure theory was to the first half. It was Kolmogorov who applied measure theory to probability theory, the first convincing (if not the only) axiomatic approach. Kolmogorov was also a pioneer writer in the early 1920s on the formulation of intuitionistic logic, in a style entirely supported by the later categorical logic approach (again, one of the formulations, not the only one; the realizability concept of Stephen Kleene is also a serious contender here). Another route to categorical logic would therefore have been through Kolmogorov, and this is one way to explain the protean Curry–Howard isomorphism.

See also

References

Books and handbook chapters

Seminal papers

Further reading

External links